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ABSTRACT

Kirchhoff's formula for radiation from a closed surface has been used
recently for prediction of the noise of high speed rotors and propellers.
Because the closed surface on which the boundary data are prescribed in these
cases is in motion, an extension of Kirchhoff's formula to this condition is
required. 1In this paper such a formula, obtained originally by Morgans for the
interior problem, is derived for regions exterior to surfaces moving at speeds
below the wave propagation speed by making use of some results of generalized
function theory. It is shown that the usual Kirchhoff formula is a special
case of the main result of the paper. The general result applies to a deform-
able surface. However, thé special form it assumes for a rigid surface in
motion is also noted. Some possible areas of application of the formula to

problems of current interest in aeroacoustics are discussed.




INTRODUCTION

Kirchhoff's formula, published in 1882, is used in the theory of diffraction
of light and in other electromagnetic problems [1-2]. It also has many appli-
cations to problems of wave propagation in acoustics [3]. One of the novel
uses of this formula was proposed by Hawkings for predicting the noise of high
speed propellers and helicopter rotors [4]. His idea involves surrounding the
rotating blades hy a closed surface S which moves with the forward speed of the
machine. Inside this surface, nonlinear aerodynamic calculations are carried
out which give the blade loads and the pressure history and its spatial and
temporal derivatives on the surrounding surface S. 1In the exterior of this
surface, it is proposed that a formula similar to Kirchhoff's be used to calcu-
late propagation of sound in terms of these surface values. This necessitates
extension of the Kirchhoff formula to apply to moving surfaces. In 1930, such
an extension was derived for the interior problem by Morgans [5]. His analysis
was lengthy and somewhat complicated, and, in addition, it does not seem to be
well known among acousticians. For these reasons, a modern derivation of a
qeneralized Kirchhoff formula applicable to moving surfaces is presented
here. It is very likely that specialized versions of this formula have been
rederived by many researchers in the context of specific applications. One
such case known to the authors is discussed in the last section of the current
paper.

In the following section the method used in the derivation of the main
result is illustrated by deriving the Kirchhoff formula for radiation into the
reaion exterior to a stationary surface S. The method involves application of
the wave operator to a function ¢ which is set equal to zero outside the domain
of interest. The function ¢ is thus discontinuous across the surface S. The

derivatives in the wave operator are considered as generalized derivatives
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[6-9) which are defined everywhere. The resulting expression then contains
terms which involve the jumps in ¢ and its derivatives multiplied by Dirac
dAelta functions whose supports are on S. These terms can be viewed as source
terms for a wave equation which is valid in the entire unbounded space.
Kirchhoff's formula is then derived using the Green's function of the wave
eguation for unbounded space.

In the main section of this paper, the above method is extended to a
smooth moving surface. It will be observed that essentially no major difficul-
ties arise in this case, One thus avoids the conventional approach which can
become complicated in the case of moving surfaces. The resultinq general
Kirchhoff formula is then written for piecewise smooth rigid surfaces. It is
also shown that the usual formula for a stationary surface is a special case of
the general result presented here.

In this paper the wave propagation problem is treated as an acoustic prob-
lem and the terminoloqy of acoustics is used. The main result is of course
applicable to many other wave propagation problems. Immediate applications to
the problem of the prediction of the noise of high speed propellers and rotors

are expected.

EXAMPLE OF THE MATHEMATICAL APPROACH
In this section the mathematical method of deriving the main result is
illustrated by utilizing it to obtain the Kirchhoff formula for a stationary
surface [1-3]. Consider the closed and bounded smooth surface S described by
£(x)=0 such that f > O in the exterior of this surface. Assume that ¢ and its
first derivatives are continuous in £ > 0 and that ¢ satisfies the wave

equation
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in the exterior of surface S, and that ¢, ot and @n are given on S for
te(-w,»), Extend ¢ to the interior of S(f < 0) by assuming that ¢ = 0 inside

S. To reduce confusion between ¢ and this extended function, the latter

function 3(x,t) is defined as follows:

P(x,t) £
~ £ (2)

0 (exterior of S)
0 (interior of S)

>
<
The function ¢ is a discontinuous function whose derivatives do not exist

on f=0. One can, however, define generalized derivatives for such a function

[6-9)]. 1In this paper operators inveolving generalized derivatives will be de-

noted by a bar over the operator symbol. It follows from the definition of

% that wherever ordinary derivatives of ¢ exist (i.e., interior or exterior to

S) one has

J%¢ = o. (3)

However, one can show, as is done below, that

2

L=

a2y _ 1 3
D=—-
c” ot

}
<l
o
H
(@]

(4)

\S]

It will be seen that what appears on the right side of Eag. (4) leads to the
Kirchhoff formula. For the reader who is not familiar with generalized func-
tion theory, it is mentioned that one requires considerable conceptual develop-
ment in going from Eg. (3) to Eg. (4). Examples of applications given in

references [7] and [8) mav help in understanding the following steps.




One can always define the surface f=0 in such a way that ‘Vf'=1 on this
surface. This is done by taking df=dn where dn is distance from the surface
f=0 alona its local normal. With this definition one has Vf=n where n is the
local unit normal pointing into the exterior region. Then, using generalized

derivatives [8], one can write at once

3¢ _ 3% of X

so% g%

37y _ %0 (5-b)
a2 a2

78 =98+ o0 8(£), (5-c)
V28 = V23 + 0 8(£) + T -[n8(£)] (5-d)

where in Fa. (5-c) the function % on the right side is defined as

$ = lim ¢(§,t) (6)
f+0+
The function ?n in Eg. (5-d) is the normal derivative of ¢, and is defined

similarly. The Dirac delta function is denoted §(f). From Eg. (5) one obtains
2% =23 - - Te = - - T .
(%6 =[3%6 - ¢ 6(£) - T+(end(£)) = -¢_8(£) - TVe[4nd(£)] (7)

Here, Eq. (3) is used in the last step. This completes the determination of
the right side of Ea. (4).
Equation (7) is valid in the entire unbounded space. One can now use the

Green's Function for the wave equation in unbounded space, §&(g)/4mr, where
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g=1-t+r/c and r= |§'X|' The space-time var1ab1es of the observer and source

are denoted (x,t) and (Z'T)' respectively. The speed of sound is c. Equation
(7) then yields

® én
andix,t) = = [ == 8(£)8(g)aydt - ¥ of == §(£)8(g)dydr. (8)

The space integrals in Eg. (8) are over the entire unbounded space and the time
integral is over (-w»,t}. The divergence operator on the right acts on the
variable X. 'se the fact that the volume element dy = dfds, where dS is the
element of area of the surface S: f = 0. Then let T + g noting that the
Jacobian of the transformation 'Br/&gl = lag/atl_1 is unity. Integration over
f, by virtue of the delta function § (f), restricts the expressions to f = O.
Subseguent inteqration over g restricts the expressions to g = 0, which intro-
duces the retarded time., Eguation (8) thus becomes

(o]

4w$(x,t) = - ds -V -f -Lgl n dSs (9)

Here the square bracket stands for evaluation of the functions at the retarded
time; i.e., [®] = &(y,t-r/c) .

Taking the gradient operator inside the second integral of Bg. (9) and
collecting terms of O(1/r) and O(1/r2), one gets

4ﬂ¢(§,t) £ >0
{

4n$(i,t)
0 f <0

[¢1cose
0 f= r2

(10)

]
Il ~—
]
Q
4]
+
%




Here ¢T= 30([,7)/3T and § is the angle between n (pointing into the exterior
region) and the radiation direction r=x-y. For the exterior region £ > 0, this
is Kirchhoff's formula for a stationary surface S. The present method auto-
matically shows that for the observer inside the surface S the integrals in
Kirchhoff's formula yield a zero {(null) field. This means that 9, °n and @T
are not independent on the surface S. Equation (10) is an identity whiqh may
be utilized in various ways. &s it stands it may be considered as an integral
representation of ¢ at points exterior to S in terms of surface gquantities,
Another interpretation follows if the observer point X is taken on S itself; in
that case, Fg. (10) becomes an integral equation governing ¢ on S. This latter
interpretation is the basis of modern boundary element methods. It is seen
that the integrals of Eq. (10) remain valid for a piecewise smooth surface S.
It is noted that in the usual applications of Eg. (10) ¢ is taken as a
complex harmonic function of time so that the temporal part of ¢ disappears in
Ea. (10); the resulting Kirchhoff formula pertains to the complex amplitude of
$ [1-3]. The amplitude satisfies Helmholtz' equation. 1In this case one could
begin the above procedure from a Helmholtz equation rather than from the wave

equation as is done above,

THE GENERAL KIRCHHOFF FORMULA
In this section, the Kirchhoff formula for moving surfaces will be derived.
Let f(i,t) = 0 describe the moving surface S which is assumed to be piecewise
smooth. The function f is defined as before such that £ > 0 outside S and V£
= non f = 0. The function ¢ and its first derivatives are assumed to be

continuous and ¢ satisfies Ea. (1). This function is again extended to ¢ by
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Eq. (2) so that Bg. (3) is satisfied both inside and outside S. The terms on
the right side of Eg. (4) are found by the same technique as presented above,

Taking the generalized derivative of ¥ with respect to time gives

3¢ 3% of 3d

£r 22 2 f) = == - f

5t 5t + ¢ 3¢ §(f) 3t ¢ v §(f) (11)
where v_ = -3f/3t is the local normal velocity of S with respect to the undis-

n

turbed medium. Differentiating both sides of Eq. (11) once more yields

t2 a2

2% 23
97¢ _ 3%% v §(f) -

3
® (x)Vn 3¢ [ov 8(£)] (12)

where ¢t = 3d/9t < ° The generalized Laplacian of ¢ is given by Eg. (5-d) as

~

(x)

before. From this and Eq. (12), one obtains

Ry 1 ] -
(2% = -(6 + =M — = [M_86(£)) - Ve[d n &(£)] (13)
n ¢ c 3t n ~
where M, = v, /c is the local normal Mach number on S. In the following,
partial derivatives with respect to time holding different sets of space vari-

ables fixed will appear. The notation introduced above (e.g. ) will be

ot(x)
maintained wherever necessary in order to prevent confusion. The source terms
in Eq. {13) can be written in other forms by performing the temporal and spa-
tial derivatives in the second and the third terms, respectively. The above
form, however, seems *o require the fewest algebraic manipulations in the fol-
lowing analysis.

"Jpon use of the Green's Function of the wave operator in unbounded space,

Ea. (13) gives



andix,€) = -f T (o + DM e )8(E)8(aaydr - L 3= [ 2 M e 8(£18(g) ay ar

1
r n ¢ n c a3t

1
<1
-

[Len 616 ay dr (14)
r ~

where ¢
T

If the spatial variables y are transformed to Lagrangian variables n and
if the transformation t+g is employed and the delta functions integrated out,
then Eg. (14) can immediately be written in the form of Eg. (5.3) of Reference
{10}. Such an approach leaves the divergence and the time derivatinve oper-
ators outside the inteqrals, however, which renders the resulting formula un-
suitable for numerical application. In the current paper Eg. (14) will be
manipulated differently to lead, as will be seen, to a more practically useful
result.

Before interpreting the integrals in Ea. (14), the following relation is

used to convert the space derivatives in the last integral to a time

derivative:

3 3 riéla@) rié(g)
O 8e)y o183 8 -2 (15)
IxX; c It r r2
where r = (x-y)/r is the unit radiation vector. Note that in this relation the

sonrce variables (y,t) are held fixed. Equation (14) can now be written as

~ 1 1 1
and(x,t) = =f ~(8 + — M 9 (yy) SE)Sladdy dr + f;—; $ cos® 6(£)8(g)dy dr
¢ 123 [ Licoss - )0 s0£)6(aray dr (16)
c oJt r n ~
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There are two types of integrals in Bg. (16), which will be denoted

—
1]

[ 0,8(£)68(a)dy dt (17)
S12 o sE)saray a (18)
L=l ™ aray et

The technigue of evaluation of these integrals will be given below.
Although in many applications of the Kirchhoff formula in acoustics the

surface S is taken as rigid, for completeness S is here assumed to be deform-

1

able. Let S be described by the surface coordinates (u', u2) and assume

u3=f. This mapping is only required in the vicinity of f=0. Let the mapping

1 2

(u', u?, ud)

+y be a differentiable function of time t. Denote the determi-
nant of the coefficients of the first fundamental form on S by d(2y = 911922 ~

q122, where the 94 (i,j = 1,2) are the metric tensor components. Then 9(2) is

j
a function of time t in addition to (u1,u2). For example, consider a sphere of
radius R(t1) whose center is moving at speed U(71). Let (u’,uz) be the spherical
surface coordinates on this sphere as shown in Fig. 1. Then if at 1=0 the

center of the sphere is at the origin of the szrame, it follows that

Y?(T) +{u3+r(1)lcos ul sin u?

Y.|=
Y, = Yg(T) +[u3d+R(1))sin ul sin u?2 (19)
0 3 2
Yy = Y3(T) +[u’+R(1)]cos u
where
o T
y (t) = Ji U(r') dr’ (20)



Also, it is seen that on S

Vg o = R2 sin u? (21)
q(2) (1)
To evaluate I the following successive transformations are carried out:
y + (ul,u2,u3) and then 1 » g. The Jacobians of transformations are 1 and
2 3)

1/(1—Mr), respectively, where M, =V -E/c . Here v = 3y/dt holding (u1,u u

fixed. After the first transformation and integration with respect to f(i.e.

u?), I, is given hy

t

1= [ [ otubuZo, 1) &) /g, dulduZdr (22)
~o D(S)

where D(S) is the domain of S in (u1,u2)-space. Note that even if S is deform-

able, the limits of the inner integrals can be made time independent and are

assumed so here (see Fig, 1). The deformation of S appears in the variation of

d(2) with 1. The second transformation 1t + g and the subseguent integration

with respect to g restrict the integrand to g = 0 and yield

01 '/q(z)

I, = ] [—1—:?;['——- ] du ldu? (23)

The interpretation of the integrand is as follows. If the relation g=0 is ex-

plicitly written (remembering that u3=f=0 also in the integrand)
g =1-1t+ i—y’v(ul,uz,o,r) /c =0, (24)

then the solution in source time, t*, of this equation is the emission time

which must he used in the integrand of Eg. (23). Note that since ’x‘ < ¢ by

10
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assumption, Bao. (24) has a unique solution. PBguation (23) will thus be written

as

I, = f [————===) du lqu 2. (25)

Since D(S) is independent of ¢t, I, follows immediately from Bg. (18) as

0,vg 0,79
A P TR L R S 2y, aulau?
¢ bpis) r € bi(s) r r (26)

where the relation 3/93t = (I—Mr)-1a/ar u ! obtained from Eg. (24), is used in

~

1

the last expression. Note carefully that in taking 3/3t the variables u' and

u? are kept fixed.

After using the results of Egqs. (25) and (26), Eg. (16) can be written as

-1 ——— —
(6 + ¢ M d )Vg d/g, . . cos
ard(x,t) = -f et ;(y) @) qulauz + [ —2 ) aulau?
D(S) r T D(S) r2(1-M)
(cose—Mn)OMg(z)

1 1 )
-c-j ['—‘"“'{

}1_, dulau? (27)
D(S) B ot T

+

r(1-M )
r

This result is equivalent to that of Morgans [5] and is referred to here as the
general Kirchhoff formula. The notation of the present paper, however, differs
from Morgans', who addressed the interior problem.

There is a somewhat subtle point which should be made, however, about the

) . . 13u2 is th .

result given in Reference [5]. The guantity [/g(z)]T*du du“ is ere written
dS, but this is not the element of area of the physical surface S which is
defined by fixing t in f(y,1)=0. That element is Jq(z) duldu2, The difference

arises because as S deforms in space any element specified by (u‘,uz) has dif-

"




ferent emission times t* for a fixed X and t. Corresponding to each t* the

surface S has a different shape. Although the main result of Morgans is

correct if interpreted as in the present paper, in some of his elementary

examples there is an ambiguity in the meaning of dS. It should be noted that

Morgans' result (27) is claimed to be erroneous by the authors of Reference

[10). However, they do not specifically point out the nature of the error.

The modern derivation given above indicates that Morgans' formula is, in fact,

correct, a conclusion which was made also by Munro [11].
Finally, it must be mentioned that the moving surface S in the above
analysis can be unbounded provided that it divides the space into interior and
exterior parts. An open bounded or unbounded surface can be considered as the
limiting case of a closed surface of infinitely small thickness to which the
Kirchhoff formula can be applied.

If S is stationary, then M, and M, are zero and 9(2) is time independent.

Under these conditions, Eg. (27), reduces to the

Also 1* is simply t-r/c.

Kirchhotf formula for stationary surfaces, (10).

Eq.

ALTERNATE FORM FOR APPLICATIONS

and als

)

Because Eg. (27) contains ¢T

(y

cated function in the last integrand, it is

readily applied for numerical analysis. In
practically useful it is essential that the
the last term be evaluated analvtically and
of geometric and kinematic quantities which

measured. To this end the following relatio

—_

3

c a1

1]

X = y(ulluzlol T)

~

12

-M
r

o a time derivative of a compli-
still not in a form which is

order to obtain a result which is
time derivative in the integrand of
the entire result written in terms
are available or can be readily

ns will be used:

(28-a)
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Q- aj-

)

aM . -
A__E = .1_ M e
aT CcC ~ ~
dcos® _ 1 1,
9T c ~

Mp 1(

—— TR ] s« n
T c ~ ~

where the dot over M and

fixed. 1In addition, the

A =M.

r ~ ~

A o=h oer

r ~ ~

M =M «n

n ~ ~
no=n o M

M ~ ~
My
DI TR T
‘/"(2)
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+ L(M2-M2) (28-b)
r r

T

r + —(M cosB-M ) (28-c)

~ r r n

+ M. i) (28-4d)

n denote source time derivative keeping (u‘,uz)

following definitions are introduced:

(29-a)

(29-Db)

(29-c¢)

(29-4d)

o] (29-e)

Note that in the last integral of Eg. (27), a new time rate of change of ¢ will

appear when

(u!

-

,u2) is kept fixed. This is denoted ¢. The relation between

% and é is obtained as follows:

w(y)

1

n

ay.
3 a0 i ae
{37'¢[Z(E'T)'T]}u =0 {ay. 37 37 u =0
3 i 3
(30)
{v «v¢ + Qr(y)}u3=0 = cMnQn + cgt-V2¢ + Qr(y)

13




where u = (u1,u2,u3), v = ax/arlu and M

N is the tangential component of the

~

Mach number vector M = v/c on S. Also V2 stands for the surface gradient

operator.

Equation (27) can now be written as

E vg $E_vg
~ 92 Law. 2 2"7(2) L 2
and(x,t) = [ [—p—===¢] ,duldu? + [ [————)  duldu (31)
~ r(1—M [ T™*
D(S) D(S) r2(1-M )

where the expressions E; and E, are

-1 . . .

-1 c
- (M2 - ) . - M -
E1 (Mn 1) ®n+ Mn%t V2¢ c Mn¢ + T [(nr Mn nM)Q
. . C—1 .
+ (cos8-M )d + (cos6M }dog)] + — (M (cos86-M )o] ; (32-a)
n n 2 r n
(1-M_)
r
E, = cos® + -—-—[2M cosf-M M _-M ] 4 —'_[(cos®- M )(M2-M2)] (32-b)
2 1- n 2
r (1-M )

If the surface S is assumed rigid, then a(2) is independent of T and
n =@ xn (33)

where w is the angular velocity of S. One can now write dS = /q(z) du'du? for
the element of area of S. Fquation (31) can thus be written for a rigid sur-
face as

E $E

as + [ [
M S r2(1-Mr)

2

o ds (34)

4nd(x,t)

where E, and E, are again given by Eg. (32) using Eg. (33) where needed. The

14
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general Kirchhoff formula of Bgs. (31) and (34) is now in a form which is suit-
able for practical applications. These results appear not to have been pub-
lished elsewhere. Once more it can be checked that the Kirchhoff formula for
stationary surfaces, Eg. (10), can be obtained from these equations. Again it
can be seen that both Bgs. (31) and (34) remain valid for a piecewise smooth

surface S.

REMARKS ON EXTENSION TO SUPERSONIC MOTION

A more qgeneral Kirchhoff formula can be derived which is valid for deform-
able, piecewise smooth surfaces in arbitrary motion (subsonic or supersonic).
The derivation of this result is very lengthy and complicated, and it will not
be written out here., It relies on the solution of the following wave equation

given by the authors [12]:
Q2 = v, -g|vefsce)l. (35)

In this equation V4 = (V,c_1a/at) and Q is a 4-vector. Note that IVf|=1 in the

present paper. Equation (13) can be written as

2% = (o + =M o 8(E) - T, «[Q 8(F)] (36)

where 0 0(n,Mn). Now the Green's function of the wave equation can be applied
to find & utilizing the result of reference [12] for the second term of Bg. (36).
The resulting Kirchhoff formula is more general than the formula presented here.

However, the various forms of the general Kirchhoff formula of the current paper

appear to be adequate for present applications in acoustics.




APPLICATIONS IN ACOUSTICS

As mentioned in the introduction, application of the Kirchhoff formula has
been proposed for rotor noise prediction. Attempts have also been made by
Forsyth and Korkan [13) to use this formula for high speed propeller noise
calculation. These authors have proposed using the Kirchhoff formula for a sta-
tionary surface which, as shown above, is very different from the general
Kirchhoff formula. The surface S in the work of Forsyth and Korkan is taken as a
finite cylinder, fixed with respect to the propeller, with its axis along that of
the propeller. This surface is therefore in motion with respect to the unbounded
acoustic medium, and the general Kirchhoff formula must be applied to S.

One of the interesting applications of the general Kirchhoff formula may be
in the prediction of the noise of high bypass ratio turbofans. These propulsors
are currently favored in aircraft designs because of their high efficiency. By
using a cylindrical surface S with its axis along the fan axis and its ends at
the fan inlet and exhaust, Fig. 2, the main result of the present paper can be
applied to predict the radiation pattern. There are several sophisticated turbo-
machinery aerodynamics codes which can supply the needed input data to the
Kirchhoff formula.

Lyrintzis and George have developed a specialized Kirchhoff formula to cal-
culate the far field noise from a single helicopter blade interacting with a
vortex [14]. Their formula applies to uniform motion of a rigid surface and is
derived by using Green's theorem. It is equivalent, in their case, to the

general Kirchhoff formula derived here, By. (34).
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Figure 2: Illustrating a surface S appropriate for
turbofan noise analysis.
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